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ABSTRACT
We consider the task of predicting subjective fashion traits from im-
ages. Specifically, we are interested in understanding which outfit
actually better suites the user. Since these traits are highly subjec-
tive, they tend to be noisier. One solution is to annotate each exam-
ple several times, but this makes it hard to collect large amounts
of data. So, for practical reasons, large data sets have only a few
human annotations for each example. This approach introduces
sampling uncertainty since labels are estimated using only a small
set of human annotations. In this paper, we provide a closed-form
expression to model the label uncertainty induced by sub-sampling.
We show that for fashion related traits our model can basically
quantify the ability of a learning algorithm to learn from noisy data.
We further use this model to construct a custom neural network
loss function which is able to better learn fashion traits.
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1 INTRODUCTION
In recent years there has been a significant performance improve-
ment in image classification tasks. The improvements can be at-
tributed to the combined effect of advances in Deep Convolutional
Neural Networks and the availability of large annotated data sets.
Almost all of the large datasets (as shown by [3, 4]) depict objective
traits such as: planes, cars or animals. Therefore, the the collection
of large amounts data can be done reliably using various crowd
sourcing or automated tools. In contrast to objective traits, there
are only a handful of small data sets with labeled subjective traits.
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In our context, subjective traits are traits that dependent on the
annotator’s personal preference, such as fashion or aesthetics.

The key problem in obtaining data for subjective traits is that
the annotations provided by humans are influenced by subjective
consideration and are therefore noisier than their objective coun-
terparts. To increase the labels reliability, each example must be
annotated numerous times by different annotators. For instance,
in [1] each example was annotated, on average, by 205 human an-
notators, each providing a feedback on the aesthetics of the image.
Acquiring these datasets poses a huge challenge for training com-
plex models like deep convolutional networks, as it requires several
orders of magnitude more annotations.

An alternative approach is simply to sub-sample the panel of
annotators. Namely, for each example only a subset of annotators
provides their vote one each image. The size of the subset might
vary depending on budget or systematic constraints. This approach
indeed reduces the number of annotations. However, this approach
introduces sampling uncertainty in the labels that varies from one
labeled example to the other. This makes it much harder for a
learning algorithm to obtain good enough performance on the test
set [15].

In this paper, we deal with the problem of learning subjective
fashion traits from sub-sampled data. Specifically, we deal with
the problem of selecting the better outfits out of two different
outfits. We provide a closed-form expression to model the label
uncertainty induced by sub-sampling. Using this model, we present
two different contributions. First, we examine the impact of the
label noise on the train and test sets, as well as derive upper bounds
on classification accuracy. Second, we train a neural network with
a dedicated loss function that simultaneously predicts the label and
its uncertainty. We demonstrate that by constructing the network
this way, we can better estimate the quality or fashionability of an
outfit.

2 RELATEDWORK
Automatic detection of subjective or social traits has been a key
research area in computer vision for quite a long time. Among some
of the relevant works are subjective image aesthetics and emotion
[1], facial attractiveness [8] and evaluation of facial beauty [6].

Handling noisy labels has also been a significant area of research
in the last years. This is due to the fact that large annotated datasets
rely on various crowd-sourcing platforms to obtain ground-truth
labels. A common approach for dealing with noise is to model
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the true label and other factors influencing the labeling process
as latent variables. Then, an inference algorithm, like expectation
maximization (EM), is applied to estimate the latent variables (see
the survey of [10]). Initially, [2] estimated both the true label and
annotator miss-label rate. Later works by [13, 14] also model the
annotation difficulty. However, the methods described abovemainly
aim to clean noisy labels, separately from the training stage of a
machine learning algorithm. In contrast, the work of [11] jointly
estimates the true label, annotator reliability and the parameters of
a logistic regression classifier.

Recently, there have been several works that deal with training
deep neural networks with noisy labels. Hinton et al. [9] suggested
solving a noisy binary classification problem using a surrogate loss
that models the miss label probability. [12] extended this idea to a
multi-class problem by adding another noise layer to estimate the
miss label probability for each class. Lastly, [5] suggested a similar
solution; however, the authors used an EM scheme that also models
dependency between the label noise and the input.

Most of the works for handling noisy labels assume that the
annotation process is objective. In this case, the skill of the human
annotator plays an important role because you can basically get
the true label by a single reliable annotator. The methods described
above work better than simple majority voting because they model
the annotator skill. However, in subjective tasks like ours, the num-
ber of annotators for each example play a much important role since
the target is the opinion of a large panel of annotators. Hence, the
label noise also stems from sampling noise, and not just annotator
skill noise.

3 MODELING SUBJECTIVE LABEL
UNCERTAINTY

3.1 Uncertainty Model
Assume we have a large panel of N human annotators (e.g., 100).
The annotators are all qualified fashion experts, so we can assume
that all of them have the same skill. Each annotator receives a pair
of images (Ai ,Bi ) of the same person wearing different outfits. The
annotator casts a vote, either “A” or “B” for the outfit he or she
finds to be better for the user. In the ideal case, we would have
N annotations for each pair, giving us the consensus ci = ai/N ,
where ai denotes the number of votes for image Ai . However, due
to budget restrictions we have only ni ≪ N annotations, resulting
in a noisy estimation of the consensus, ĉi = âi

ni , where âi is a noisy
estimate for the number of votes for image Ai . Similarly, bi and b̂i
are defined for image Bi .

In order to estimate the uncertainty in computing ĉi due to
sampling, we first assume that for each image pair i the annotators
votes are independent given the true consensus ci .

Each annotator’s vote vik , is a binary random variable, where,
without loss of generality, "1" indicates a vote for image Ai and "0"
for image Bi . Sampling a single vote vik out of the ni votes of a
pair, is equivalent to sampling without replacement from a finite
set of N Bernoulli random variables. This is known to follow a Hy-
pergeometric distribution which is a generalization of the Binomial
distribution. Therefore, for a pair i with ni votes the probability of
the noisy consensus ci given by:

p (ĉi |ci ,ni ,N ) ≡ p (âi |ai ,ni ,N ) =

(ai
âi

)
·
(N−ai
ni−âi

)
(N
ni

) . (1)

Where the identity above holds, up to quantization effects of ci .
However, we would like to estimate the true consensus ci , given
the noisy consensus ĉi . To compute that we apply Bayes rule:

p (ci |ĉi ,ni ,N ) =
p (ci |N ) · p (ĉi |ci ,ni ,N )

p (ĉi |ni ,N )
(2)

Since the likelihood function (1) follows a Hypergeometric distribu-
tion, and the prior p (ci |N ) follows a Beta-binomial distribution, the
posterior also follows a Beta-binomial distribution. This holds due
to the conjugate prior property. Hence, we can write the prior as:

p (ci |N ) = BetaBin(ai |α , β ,N ) =

(
N

ai

)
B (α + ai , β + N − ai )

B (α , β )
(3)

and the posterior probability as:

p (ci |ĉi ,ni ,N ) ≡ p (ai |âi ,ni ,N ) = BetaBin(ai |α + âi , β +ni − âi ,N )
(4)

The parameters α , β are estimated by taking a small sample (around
4K) of the train data annotated by all N annotators. Then, both α , β
are estimated by maximum likelihood estimation. Fig.1 presents
the empirical posterior distribution versus the analytical posterior
given by the Beta-binomial distribution.

3.2 Class Uncertainty
In the previous section, we have established the uncertainty in the
estimation of the true consensus ci . In a classification problem, we
are interested in measuring the class uncertainty in the labeled data.
The class definition is merely a quantization of the values of ci into
bins. For fashion related traits, the simplest quantization is into two
bins. This basically means selecting the better outfit out of the two.
In the binary case, 0 ≤ ci < 0.5 implies that the panel finds image B
to be more appealing, and the case 0.5 ≤ ci ≤ 1 implies that image
A is more appealing. Recall that for each pair i we have ni votes
and a noisy estimation of the consensus ĉi . So, the uncertainty in
the label of pair i reflects the probability that the true consensus ci
is actually in the other bin. In the binary case, it is the probability
of having a label flip.

The uncertainty is determined by two factors: the number of
sampled annotations ni and the difficulty comparing the two im-
ages. If the value of ĉi is either close to 1 or 0, this means that there
is a clear preference for one image over the other. However, ĉi ≈ 0.5
indicates that there is no clear preference for either Ai or Bi and
determining which is better is much harder.
Formally, for the binary case, the uncertainty is computed by in-
tegrating over the consensus values of the opposite side of the
consensus range

uncertainty (ĉi ≥ 0.5,ni |N ) =

∫ 0.5

0
p (ci |ĉi ,ni ,N )dci (5)

uncertainty (ĉi < 0.5,ni |N ) =

∫ 1

0.5
p (ci |ĉi ,ni ,N )dci (6)
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(a) âi = 3, ni = 3
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(b) âi = 20, ni = 40

Figure 1: model (blue) vs Empirical (red) posterior distribution for
ni = 3, 40, we can see that our model fits well the empirical distribu-
tion

In the general case, the value of ci in quantized into more than
two bins. In this case, the uncertainty is calculated as the flip prob-
ability, over all the bins which are different from the bin of ĉi :

uncertainty (ĉi ,ni |N ) =
∑
ci,ĉi

p (ci |ĉi ,ni ,N ) (7)

3.3 Dataset Uncertainty
In the majority of machine learning classification problems, the
labels are considered “clean” and the upper bound for the algorithm
accuracy is 100% (although it is not tight). In our case, the test set
labels pose inherent noise, which is far from being uniform across
labels. Therefore, it is critical to provide tight bounds for accuracy,
because otherwise the interpretation of the algorithm failures can
be misleading.

We denote ui (7) as the uncertainty of the ith label. The true
value ci may be quantized as a binary variable (as shown in previous

section), or to more fine-grained values.
As a result, we can calculate the average uncertainty ū for a given
labeled dataset.

4 EXPERIMENTS
We consider the problem of deciding which outfit is better given
a pair of outfits. We preform two types of experiments. The first,
we demonstrate that the uncertainty model is able to predict when
a learning algorithm becomes saturated and unable to generalize
due to label noise. The second, we construct a custom neural net-
work loss that directly models the posterior probability in (4). We
demonstrate that this custom loss is superior to other standard loss
functions.

4.1 Dataset
Our data set consists of image pairs showing individuals wearing
different outfits. The images are captured not in a studio but in a
natural environment (e.g. outdoors, at home etc.). Each pair depicts
the same person wearing two different outfits. In order to estimate
which outfit is more fashionable each pair was annotated by several
fashion experts. The number of annotation per image pair varies
between 1-100.

We divide the dataset into three non-overlapping sets: train (1M),
validation (58K) and test (7K). The sets are divided such that a user
can only appear in one set.

The test set Dtest is constructed such that each pair i ∈ Dtest
is annotated at least 60 times. This is because the expected accu-
racy of a given algorithm A is bounded by the test set uncertainty
ūtest . Beyond that we cannot differentiate between the accuracy of
various learning algorithms. If we require 60 annotations for each
pair, the posterior distribution (4) is much narrower and the test
set uncertainty is close to zero (ūtest = 0.03).

4.2 Implications of label uncertainty on
learning

Following the uncertainty model in section 3, we study the impli-
cations of label uncertainty on the ability of a learning algorithm
to generalize over the test set. In our experiments, we trained a
neural network with binary classification targets where the labels
are determined according to the majority vote of the annotation
panel for that particular pair. In our experiments, we used a Siamese
residual network [7] with weight sharing.

In order to test the relationship between the uncertainty of the
training set and the ability of a learning algorithm to generalize
from it.We selected several different sets from the entire training set.
Each such set contains 180K with varying degrees of uncertainty
and annotation budget. One each set, trained the same algorithm
(Siamese Resnet50) and measured its binary accuracy on the com-
mon test set (7K densely annotated pairs). Table 1 summarizes the
performance of the network trained over each sub-set. We can see
that one can invest 4.3 annotations per image and still have a rather
noisy train set over which the algorithm struggles to generalize.
On the other hand, you can simply annotate each image once and
gain roughly 9% increase in accuracy. We can observe similar be-
havior on the train set accuracy. It increases when the uncertainty
decreases. It seems that the label noise makes the classification



KDD2017 Fashion Workshop, August 2017, Halifax, Nova Scotia, Canada A. Neuberger et al.

problem less separable, making the fitting of the classifier more
difficult.

It is interesting to see, that when the train set uncertainties are
similar, the performance of the networks is similar as well. This
despite the fact that one set has nearly three times more annotations
per image than the other. Therefore, the uncertainty of the train
set labels is a better predictor for the algorithm success than the
number of annotation per sample.

# Pairs
Average

annotations
per pair

Train
uncertainty

Train
accuracy

Test
accuracy

180K 4.3 0.40 0.700 0.584
180K 1.0 0.27 0.765 0.673
180K 3.1 0.25 0.758 0.669
180K 5.2 0.15 0.839 0.703

Table 1: Train sets with same pairs number and various un-
certainty levels

We further tested the suggested model, by training the same
network using two different training sets. The first contains only
pairs with uncertainty smaller than 0.3. The second set is produced
by augmenting the first set with 111K pairs with pairs with uncer-
tainty ranging from 0.3 to 0.4 Table 2 summarizes the performance
of the network over each training set. We can see that augmenting
the set with 111K pairs with high uncertainty didn’t contribute at
all to the ability of the algorithm to improve the accuracy over the
test set.

To complete the experiments, we consider two possible augmen-
tations for a train set of 500K pairs with a single annotation per
pair. The first, adds 500K pairs with a single annotation for each
pair. This keeps the train set uncertainty unchanged (0.27 on both).
The second, adds only 79K pairs but the train set uncertainty is
reduced to 0.24. It is important to stress that both augmentations
have the same annotation budget (500M each). Table 3 summarizes
the accuracy of the network before and after the augmentations.
We can see that adding 500K pairs without reducing the uncertainty
in the train set did not improve the accuracy. In contrast, adding a
small number of pairs with lower uncertainty increased the accu-
racy by 1.8%. We can learn that adding more noisy labels may not
improve the generalization of the algorithm, though adding clean
labels does as predicted by our model.

# Pairs
Average

annotations
per pair

Train
uncertainty

Train
accuracy

Test
accuracy

355K 8.55 < 0.3 0.902 0.727
466K 8.53 < 0.4 0.842 0.724

Table 2: Network accuracy on augmented base set with aug-
mentation of pairs with uncertainties < 0.3, 0.4

# Pairs
Average

annotations
per pair

Train
uncertainty

Train
accuracy

Test
accuracy

500K 1.0 0.27 0.700 0.705
1M 1.0 0.27 0.667 0.700
579K 1.7 0.24 0.707 0.718

Table 3: Network accuracy with augmentation of the same
uncertainty and lower uncertainty

Figure 2: Neural Network Architecture

4.3 Learning with Uncertainty
In order to integrate our uncertainty model in to the learning pro-
cess. We integrate it into a deep learning framework that instead
of predicting the consensus class directly predicts the posterior
distribution (4). The target of the network is to maximize the simi-
larity between the posterior distribution and the output distribution
from the neural network p̃ (ci |Ai ,Bi ). This is achieved by training
the network with a Kullback-Leibler divergence loss. Formally, the
network loss for a single image pair is defined as:

loss = KL(p (ci |ĉi ,ni ,N ) | |p̃ (ci |Ai ,Bi )) . (8)

The network architecture is a Siamese Resnet-50 [7] network with
weight sharing between the branches. Each branch of the network
is applied on a single image each image to obtain a per-image repre-
sentation computed from the FC1 stacked on top of the pool5 layer
(followed by Relu and Dropout). Both image representations are
then concatenated to obtain a pair representation. This representa-
tion is connected to a fully connect layer with 10 output neurons
followed by a Softmax normalization. The 10 neurons normalized
output represents the estimated posterior distribution (4).

We trained our network using Stochastic Gradient Descent, with
a batch size of 40. The network was initialized with pre-trained
ImageNet model and trained for 200K iterations with a starting
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Loss type Train
uncertainty

Test
accuracy RMSE

classification-10 0.20 0.703 0.358
classification-2 0.20 0.717 0.214
uncertainty 0.20 0.727 0.206
classification-10 0.15 0.705 0.251
classification-2 0.15 0.716 0.238
uncertainty 0.15 0.735 0.202

Table 4: Comparison of neural network performance

learning rate of 0.01. After each 60K iterations the learning rate was
reduced by a factor of 10. We compared our approach (uncertainty)
with two other methods, all using the KL-loss:
• 10 bins classification (classification-10) - we classify the bin of
the sampled consensus using a one-hot ground truth vector
(uniform sampling with 0.1 intervals).
• Binary classification (classification-2) - predicting the major-
ity votes for each pair. The ground truth is either 0 or 1 and
the number of output neurons is 2.

Table 4 summarizes the experiments on data sets with average
uncertainty of 0.15 (531K pairs) and 0.2 (1M pairs) For each training
set, we evaluate the performance of each one of the methods. In
addition to binary accuracy, we calculated the root mean squared
error (RMSE) for penalizing coarse errors more than fine ones.

From table 4 we can conclude that the uncertainty based loss
achieves 2-3% increase in binary accuracy compared to othermodels.
In addition, the granularity of the prediction is much more accurate
as indicated by the 0.05-0.15 improvement in RMSE. The resulting
improvements demonstrate the effectiveness of incorporating the
posterior distribution of the label in the loss function.

5 SUMMARY
Predicting which outfit is more fashionable is a challenging task
even for state-of-the-art deep learning architectures, trained on
large amounts of labeled data. As we demonstrated, label noise
plays an important role when training and evaluating an algorithm
for this task. In this paper, we modeled the label noise as a statistical
distribution conditioned on known factors. We have demonstrated
that the ability of the algorithm to learn depends on the label uncer-
tainty and not on the number of annotations per sample. In addition,
we have shown that from a certain point adding more training ex-
amples without reducing the label uncertainty does not improve
the ability of the algorithm to learn. Finally, we have shown how
our model can be integrated into a learning algorithm by training
a neural network that directly estimates the label uncertainty. This
network was applied to the problem of selecting the better outfit
out of a pair of outfits. For this task, integrating the model into
the network yielded a performance gain compared to other loss
functions.
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